

Data sheet

This data sheet provided for information only

2,5X HFMas^{GR}MIX-1510

RESEARCH USE ONLY

GREEN "Ready-to-Load" Hi-Fi amplification MasterMix

Cat. No.	Pack	Conc.	
MMHFG-100	100 rnx	2,5 X	
MMHFG-500	500 rnx	2,5 X	

Stability:

2,5X HFMasMixGR stable for 24 months at -20°C, **or** for 6 months at +4°C storage without freezing.

CONTENT:

1X: HF-Fuzz Polymerase
0.2mM each of dNTP's
1,5 mM MgCL₂
Reaction buffer components
Stabilizer/enhancer
Two inherent dyes

DESCRIPTION

2,5X HFMasMixGR is a **green colored** ready-to-load premix of all components for "high-fidelity" amplification of target DNA, contains **stabilizer/enhancer**, which improves thermostabilization of enzyme during PCR amplification and storage.

2,5X HFMasMixGR contains **HF-Fuzz** DNA Polymerase - a unique artificial enzyme created on the basis of intellectual protein design planning by genetic engineering technique. The enzyme possess high fidelity feature. The processivity of the enzyme is very high, so the combination of processivity with fidelity results in dramatically increased yield of PCR products, very high sensitivity of PCR tests, ability to amplify "difficult" templates.

2,5X HFMasMixGR provides:

- Superior fidelity 50x improvement compared to Taq polymerase;
- Excellent performance across a wide range of "difficult" templates;
- Long range amplification of complex targets > 10 kb from genomic DNA;
- High speed reduce reaction times (only 1-1,5 sec elongation time per 100bp)
- dUTP poisoning resistance

Just place it into the tube/plate adds primers and template of choice mix all components and run PCR.

After PCR reaction running, apply 5-10 μ l of reaction mixture directly without any other manipulations to the gel and run electrophoresis.

Recommended PCR assay

50μl PCR assay		Final Conc.	
20μΙ	2,5X HFMasMixGR-1510	1X	
$0.2\text{-}1\mu\text{M}$	each Primer		
Variable*	DNA Template		
To 50μl	PCR Grade Water		

*- depending on DNA template initial concentration

APPLICATIONS:

- High Fidelity (Hi-Fi) PCR
- Cloning
- "Hi-Fi" LD PCR
- "anti-contamination" PCR
- GC-rich templates amplification
- " fast-PCR"

STORAGE CONDITIONS:

Store **2,5X HFMasMixGR** at -20°C (for long-term storage).

SHIPPING CONDITIONS:

Should be shipped at ambient temperature For long distance shipments preferably in **Blue Ice**

General Protocol for amplification with 2,5X HFMasMixGR-1510

Add and mix the following components:

Component	50μL reactions	25μL reactions	Final concentration
PCR grade Water	Up to 50 μL	Up to 25 μL	
2,5X HFMasMixGR-1510	20 μL	10 μL	1X
Primers		•	0.3-0.5 μM each
Template DNA	optionally	optionally	5-50ng

2,5X HFMasMixGR contains 1,5mM (1X) of MgCL₂. For most applications, it working fine. In some cases, we recommends to optimize Mg concentration in the range 2.0-3.0mM We recommend using 25μ l reaction for the PCR with **2,5X HFMasMixGRGR**

2,5X HFMasMixGR Components

1. HF-Fuzz Polymerase

- **2,5X HFMasMixGR** contains optimal amount of enzyme for amplification in 50μ l final reaction volume -1U. For most applications, including "long-distance" PCR amplification (DNA targets >5Kb for human genomic DNA), such quantity is optimal.
- **2,5X HFMasMixGR** allows to amplify complex, GC-rich (up to 80% GC-pairs) DNA samples without addition of any well-known PCR additives, with the highest speed (elongation time as low as 1,5 seconds per 100 b.p.).

2. Buffer Components

2,5X HFMasMixGR Buffer components especially designed to provide very high reproducibility across the wide range of amplification conditions, including "fast-PCR" (reduced time of PCR reaction). In some cases we recommend to optimize Mg concentration in the range 1.5-4.5mM

3. dNTP's

2,5X HFMasMixGR contains $200\mu M$ of each of regular dNTP's as final optimal concentration optimal. It is not necessary to optimize dNTP's concentration.

4. Primers

Usually 10-20pmol of each specific primer in reaction is enough to get good PCR result. If you are using 2-step PCR with the whole blood as a template, it is better to use >= 20pmol of each primer.

5. PCR Additives

2,5X HFMasMixGR is compatible with the most of commonly used PCR additives for enhancing of high GC-content DNA templates (glycerol, betaine, DMSO and other), but it already contains all reagents for high quality PCR amplification of complex, GC-rich templates.

If one will use any additives, take into account the changes of Tm of primers and DNA to correct annealing temperature.

6. Dyes combination

2,5X HFMasMixGR contains two inherent dyes (orange and blue) which in combination gives green color. Both of them not reduce effective PCR amplification. They allows loading amplified sample directly to agarose gel for correct result identification.

Cycling Protocol:

We recommend to use for most applications 2-step PCR protocol, where primers of choice has Tm of both not less, than 61-62°C.

	2-step amplification		3-step amplification		_
Cycle step	T°C	Time	T°C	Time	Cycles
Initial	98°C	1-5 min	98°C	1-5min	1
Denaturation					
Denaturation	98°C	2-10 S	98°C	5-10 S	
Annealing	-	-	55-72*	10-30 S	25-35
Extension	68-72°C	15-30 S/Kb	72°C	15-30	
				S/Kb**	
Final extension	72°C	1-2 min	72°C	1-3 min	1
	4°C	hold	4°C	hold	

^{*}Optimal Tm for the primer pair recommended as Tm of the lower primer +3-6°C, for the standard oligos <20nt.

1. Initial Denaturation:

-1) For most applications it is quite enough to denaturate sample in the first cycle for 1min for templates up to 3Kb and 2-5 sec at 98°C for the targets more than 3 Kb. Initial denaturation for 5 min at 98°C is necessary only for blood cells lysis;

2. Denaturation:

-1) we recommends using 98°C, as an optimal denaturation temperature, which allow to overcome problems with DNA templates with high level of secondary structures.

NOTE: Do not use lower T denaturation, than 98°C; it can cause problems in PCR (nonspecific amplification, poor yield of PCR product, etc.)

2. Annealing/Extension:

For **2,5X HFMasMixGR**, which contains **HF-Fuzz** Polymerase "Annealing" and "Extension" steps, should be combined if:

- -Tm of both primers are not differs dramatically (<3°C);
- -Tm of the primers are at least more than $62-64^{\circ}\text{C}$ (optimal Tm for the primers lays between $65-70^{\circ}\text{C}$) If primers Tm is about $60-62^{\circ}\text{C}$ for both primers, ones can apply simple formula to determine starting Ta/e point (Tm of the lower primer +72°C)/2. For most applications, it works fine.

To determine a better Ta/e run gradient amplification.

- To avoid nonspecific band formation/smearing during amplification not exceed extension time of 30 seconds and use the highest ramp rate of amplificator (the ramp rate >4-5°C preferable)
- **For non-complex DNA templates (plasmid DNA, phage DNA, BAC clone) extension time could be reduced up to 15 sec/Kb or less, up to 5 sec, depending on the length of amplicon.

For complex DNA templates (human DNA) strongly recommended to apply "Extension" time 15-20 sec per Kb for templates > 2 Kb.