Data sheet This data sheet provided for information only # 2X UltraMas^{CF}Mix-2025 **RESEARCH USE ONLY** ### Ready-to-use MasterMix for "fast-PCR" amplification | Cat.No. | Pack | Conc. | | |----------|---------|-------|--| | Dia-7140 | 100 rnx | 2 X | | | Dia-7141 | 500 rnx | 2 X | | ### Stability: **2X UltraMas^{cF}Mix** stable for 24 months at -20°C, **or** for 6 months at +4°C storage without freezing. #### **CONTENT:** 1X: UltraSmarTaq Polymerase 0.2mM each of dNTP's 2,0 mM MgCL₂ Reaction Buffer components Stabilizer/enhancer #### **DESCRIPTION** **2X UltraMas**^{CF}**Mix** is a ready-to-use premix of all components for amplification of target DNA, contains **stabilizer/ enhancer**, which improves thermostabilization of enzyme during PCR amplification and storage. **2X UltraMas^{CF}Mix** contains **UltraSmarTaq Polymerase** - **special blend of antibodies- blocked polymerases**, which are not active at ambient temperature (during PCR set-up) and activated automatically during the first PCR cycle at the temperature >70°C, preventing miss-priming and other artifacts formation. It is no need for prolonged heating for activation of enzyme for PCR. **2X UltraMas^{CF}Mix** can be used for "fast-PCR" amplification, reducing total reaction time up to 30-35 min. for amplification of DNA targets up to 1Kb. Total run-time of PCR using **2X UltraMas^{CF}Mix** could be dramatically reduced by: - -shortering of annealing/elongation times up to 5-10 seconds per kilobase of DNA; - combining of Annealing and Elongation steps; - increasing of Denaturation Temperature to 98°C vc 95°C (for commonly used Polymerases) to overcome problems with DNA secondary structures, and decreasing, at the same time, of the denaturation time up to 1-2 sec. per cycle; - **2X UltraMas^{CF}Mix** contains optimized buffer reagents, which greatly improve specificity of PCR with **complex**, **low-copy number DNA templates**, **multiplex PCR**, **"real-time" PCR**, allowing to use very small initial quantities of DNA template. #### **Recommended PCR assay** | 50μl PCR assay | | Final Conc. | |---------------------------|------------------------------------|-------------| | 25μΙ | 2X UltraMas ^{CF} Mix 2025 | 1X | | $0.1\text{-}1\mu\text{M}$ | each Primer | | | Variable* | DNA Template | | | Το 50μΙ | PCR Grade Water | | ^{*-} depending on DNA template initial concentration **APPLICATIONS:** - -"fast-PCR" amplification - Primer extension - "Real-Time" PCR (all types) - Low-copy PCR (UltraSmarTag Polymerase) - Multiplex PCR #### **SHIPPING CONDITIONS:** Should be shipped at ambient temperature For long distance shipments preferably in **Blue Ice** #### **STORAGE CONDITIONS:** Store **2XUltraMas^{cF}Mix** at -20°C (for long-term storage). ## General Protocol for amplification with 2X UltraMas^{CF}Mix -2025 During PCR amplification, the polymerase in the **2X UltraMas^{CF}Mix -2025** amplifies target DNA using sequence-specific primers. For all pairs -target DNA/primers protocol must be adopted for your specific DNA sample. **2X UltraMas**^{CF}**Mix -2025** is provided at a convenient 2× concentration. Only the addition of DNA template of choice and specific primers is necessary. Add and mix the following components: | Component | 50 _μ L reactions | 25 _μ L reactions | Final concentration | |-----------------------------------|-----------------------------|-----------------------------|---------------------| | PCR grade Water | Up to 50 μL | Up to 25 μL | | | 2XUltraMas ^{CF} Mix-2025 | 25 μL | 12.5 μL | 1X | | Primers | | | 0.3-0.5 μM each | | Template DNA | optionally | optionally | 1-50ng | In some cases, we recommends to optimize Mg concentration in the range 2.5-4.5mM We recommend using 25μ l reaction for the PCR with **2X UltraMas**^{CF}**Mix-2025** ## **Cycling Protocol:** | | 2-step amplification | | | |---|----------------------|-------------------|--------| | Cycle step | T°C | Time | Cycles | | Initial Denaturation | 98°C | 1-2 min | 1 | | Denaturation
Annealing/
Extension | 98°C
*62-72°C | 1-5 S
5-15 S | 30-40 | | Final extension | 72°C
4°C | 0,5-3 min
hold | 1 | #### 1.Denaturation: - -1) For most applications time up to 1min of "Initial Denaturation" is quite enough. Impirically it could be reduced up to 30 seconds; - -2) Initial denaturation for 5 min at 98°C is necessary only for blood cells lysis; - -3) For most applications, including "direct-blood" 2 sec at 98°C is enough for denaturation of the sample in during PCR run. NOTE: Don't use lower T denaturation, then 98°C; it can cause problems in PCR (nonspecific amplification, poor yield of PCR product, etc.) ### 2.Annealing/Extension: NOTE! 2X UltraMas $^{\text{CF}}\text{Mix}\,$ -2025 optimized for the annealing/extention parameters for the primers with Tm at or above 60-62 $^{\circ}\text{C}$ For **2X UltraMas^{CF}Mix -2025** "Annealing" and "Extension" steps should be combined if: - Tm of both primers are not differs dramatically (<3°C); - Tm of the primers are at or above 60-62°C (optimal Tm for the primers lays between 64-68°C) - If primers Tm is about 60-62°C for both primers, ones can apply simple formula to determine starting Ta/e point (Tm of the lower primer +72°C)/2. As the starting point of determining of Ta/e, see table below. For most applications it works fine. - -To determine an optimal Ta/e for better amplification results run gradient amplification. - -To avoid nonspecific band formation/smearing during amplification not exceed extension time of 30 seconds and use the highest ramp rate of amplificator (the ramp rate >4-5°C preferable) - **For non-complex DNA templates (plasmid DNA, phage DNA, BAC clone) extension time could be reduced up to 15 sec/Kb. For complex DNA templates (human DNA) in amplification of the fragments longer than 2Kb strongly recommended to apply $\bf Extension\ time$ as 30 sec/Kb For the DNA templates with GC content less 65% and up to 500bp length, it's quite enough to set Extension time as 15 sec per cycle. #### 3.Final Extention: For most applications 30 seconds of "Final Extention" step is enough. If you 'll use amplification product for further cloning – it's better to use prolonged final extention up to 3 min. ## **Optimization of Cycling Conditions** | Primers Tm calculated | Ta∕e, °C | GC- content,% | Elongation,sec | Cycles No | Target size,
bp | |-----------------------|----------|----------------------|----------------|-----------|--------------------| | 60-62 | 64-66 | High >55%
Low<55% | 10-15
5-10 | 30-35 | <500 | | 63-65 | 67-69 | High >55%
Low<55% | 10-15
5-10 | 30-35 | <500 | | 67-69 | 70-72 | High >55%
Low<55% | 10-15
5-10 | 30-40 | <500 | | 69-72 | 70-72 | High >55%
Low<55% | 10-15
5-10 | 30-40 | <500 | All data in the table are only recommendation and starting point. To get optimal results, cycling conditions for every primers pair must be optimized, depending on initially calculated Tm of primers, GC-content, target length, specifisity and other crusial for amplification parameters.